Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

nyserda.ny.gov


Aura - Background Content
backgroundImageHrefTypelink
padding10
backgroundColor#222c4e
containerMinHeight0
backgroundSizecover
contentPositionflex-start
backgroundPositioncenter center


HTML
<div class="dropdown">
  <button class="drop-down-button1">Playbook Menu</button>
  <div class="dropdown-content">
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723298">Playbook Home</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723436">Getting Started</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723438110723479">Building Discovery</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723479110723438">Energy & Carbon Modeling</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723484">Economic & Financial Analysis</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723487">Durst: Case Study</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723493">ESRT: Case Study</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723518">Hudson Square Properties: Case Study</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723562">Vornado: Case Study</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723596">Learn More About the Playbook</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723606">Tenant Engagement</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723608">Financing</a>
  <a href="https://knowledge.nyserda.ny.gov/pages/viewpage.action?pageId=110723610">Training</a>
  </div>
</div>


Aura - Title
color#222c4e
textAlignleft
fontSize20
lineHeight20
cloudTextDemo Title
tagh2
fontWeightbold
HIDDEN


Aura - Title
color#f3b43d
textAlignleft
fontSize38
lineHeight38
cloudTextDemo Title
tagh2
fontWeightbold
Energy & Carbon Modeling



Aura - Panel
tab1
styles{"body":{},"header":{},"headline":{},"base":{"backgroundColor":{"color":"#ffffff"},"border":{"color":"#222c4e","style":"solid","width":1,"bottom":true,"top":true,"left":true,"right":true}}}
body<p><br /></p>

 A calibrated energy model should play a central role in building out a decarbonization plan because it provides insights on:

  • Current building energy and carbon profiles, and costs
  • Potential energy, carbon and cost savings of energy conservation measures (ECMs)
  • The impact of groups of ECMs, and the order in which they should be implemented over time.

The steps to follow include:

  • An initial energy model is developed using commonly available building information such as architectural floorplans, MEP schedule sheets, and BMS sequences of operation. 
  • The initial model is then refined and “calibrated” to the building’s real utility data for each utility consumed, creating a baseline condition that ECM’s will be compared against. 
  • The baseline energy model is used as a test bed for individual ECMs to understand potential energy, carbon and cost impacts. 
  • Evaluate the financial performance of each ECM. These results will be used to identify strategies that are economically viable and should be considered further.  
  • Those ECMs that are economically viable on their own may be grouped together with other ECMs to help build a holistic business case for system optimization and maximum carbon reduction. 
  • During the evaluation process, the project team should take the evolving emission factors associated with utilities such as electricity and steam, as well as the impact of rising average and design day temperatures/humidity, into account.

Key outputs from the energy modeling workflow should include data driven charts showing energy end use breakdown and costs, carbon footprint of each utility, building carbon emissions vs. LL97 targets and fines, and who "owns" the carbon footprint (i.e. tenants, building operations).It is important to note that not all energy models are created equal. For a deep energy retrofit project, the accuracy of the energy model should align with ANSI/ASHRAE/IES Standard 90.1. Code or LEED energy models that were developed for the building in the past are not appropriate for this effort.  

You can learn more about building energy modeling here.

Below is a selection of the energy modeling software packages used to support the case study findings presented in this Playbook, and throughout the industry. 

Expand
titleEnergy Modeling Software Packages

eQuest DesignBuilder DOE-2 EnergyPlus OpenStudio


Aura - Panel
tab1
styles{"body":{"text":{"fontSize":14,"color":"#002d72","textAlign":"left","fontWeight":"normal"}},"header":{},"headline":{},"base":{"boxShadow":{"shadows":[{"color":"rgba(0, 0, 0, 0.08)","x":0,"y":1,"blur":1,"spread":0},{"color":"rgba(0, 0, 0, 0.16)","x":0,"y":1,"blur":3,"spread":1}]},"borderRadius":{"radius":4},"backgroundColor":{"color":"#ffffff"}}}
body<p class="auto-cursor-target"><ac:structured-macro ac:name="anchor" ac:schema-version="1" ac:macro-id="6a8b6196-eefc-492e-9c1d-a21eae1feaa4"><ac:parameter ac:name="">table_of_contents</ac:parameter></ac:structured-macro></p><h2>Table of Contents</h2><p><ac:structured-macro ac:name="toc" ac:schema-version="1" ac:macro-id="ea3b3c70-dd92-4182-9e45-e654f98acfa4"><ac:parameter ac:name="maxLevel">1</ac:parameter></ac:structured-macro></p>

Anchor
table_of_contents
table_of_contents

Status
subtletrue
colourYellow
titleTABLE OF CONTENTS

Table of Contents
maxLevel1



Aura - Panel
tab1
styles{"body":{"text":{"fontSize":14,"color":"#002d72","textAlign":"left","fontWeight":"normal"}},"header":{},"headline":{},"base":{"boxShadow":{"shadows":[{"color":"rgba(0, 0, 0, 0.08)","x":0,"y":1,"blur":1,"spread":0},{"color":"rgba(0, 0, 0, 0.16)","x":0,"y":1,"blur":3,"spread":1}]},"borderRadius":{"radius":4},"backgroundColor":{"color":"#ffffff"}}}
body<h1><span style="color: #003366;">Build the Initial Energy Model</span></h1><hr /><p><span style="color: #003366;">Building an initial baseline energy model starts with commonly available energy information such as that found on monthly utilities bills. Combining that information with Building Management System (BMS) data allows one to develop insights about the building&apos;s operation and energy usage.&nbsp;</span></p><p><span style="color: #003366;"><strong>INPUTS</strong></span></p><p><span style="color: #003366;"><span class="TextRun SCXW256333377 BCX0"><span class="NormalTextRun SCXW256333377 BCX0">Inputs for this task include the well-organized compilation of information and data collected during the Discovery Phase. Please refer to the &ldquo;Learn the Building&rdquo; section for specific information of what should be collected. </span></span><span class="EOP SCXW256333377 BCX0">&nbsp;</span></span></p><p><strong>OUTPUTS</strong>&nbsp;</p><p><span>Deliverables from the baseline energy model work include the following:</span><span>&nbsp;</span></p><ul><li><span>Building&nbsp;Energy&nbsp;Consumption&nbsp;and&nbsp;Detailed End&nbsp;Use Breakdowns&nbsp;</span><span>[Graphic]</span><span>&nbsp;</span></li><li><span>Documented Baseline System Assumptions</span></li></ul><p><strong>ACTIVITIES</strong></p><p><strong><span><span style="color: #ff9900;">Define and Understand the Purpose of the Energy Model</span></span></strong></p><p><span>The purpose of&nbsp;energy modeling&nbsp;in this context&nbsp;is to&nbsp;provide&nbsp;high-accuracy estimates&nbsp;of&nbsp;potential energy, cost and carbon savings&nbsp;for energy conservation measures&nbsp;(ECMs)&nbsp;under&nbsp;consideration.&nbsp;The energy model should&nbsp;incorporate&nbsp;site&nbsp;weather data&nbsp;for a typical year&nbsp;as well as&nbsp;detailed&nbsp;information about building&nbsp;geometry, building construction,&nbsp;systems,&nbsp;operations, and occupancy. The energy model will use&nbsp;this information to simulate the building&rsquo;s energy consumption for every hour of the year. </span><span>&nbsp;</span></p><p><span>Code or LEED energy models that may have been created for the building during its initial design and construction should not be used in deep energy retrofit study efforts&nbsp;because they do not reflect the actual performance of the building under study.</span><span>&nbsp;</span></p><p><em><span style="color: #ff00ff;">The goal at this phase of the project is not to create an exact replica of the building&mdash;doing so would require modeling effort and investment in building metering that does not yield improvements in model accuracy that will improve decision making. Instead, energy models routinely include simplifications that maintain fidelity to metered data and an appropriate level of detail to form a basis of comparison for ECMs under consideration </span>- <span style="color: #ff00ff;">Italics: