What is a Strategic Decarbonization Assessment?

Prepared for NYSERDA, Empire Building Challenge

Lane Burt, Ember Strategies

LBurt@EmberStrategies.com

March 2021

A Strategic Decarbonization Assessment is...

An energy audit (ASHRAE Standard 211)

- + A partial Property Condition Assessment (PCA)
- + A discounted cash-flow (DCF) analysis of different investment scenarios

All in one.

Why? Because the real estate industry will plan for decarbonization *the same* way that it plans for everything else.

→ The SDA is built upon ASHRAE Standard 211 normative forms, looks forward and integrates uncertainty like a PCA, and uses DCF and scenarios to frame decisions.

Where did the SDA come from?

The San Francisco Department of the Environment commissioned the SDA in preparation for an update to its Climate Action Plan and negotiations with local building owners on the timeline for decarbonization requirements.

The SDA was built by Arup and Ember Strategies.

SFE currently accepts the SDA as alternative compliance with City's energy audit ordinance.

https://sfenvironment.org/energy/strategic-decarbonization-assessment

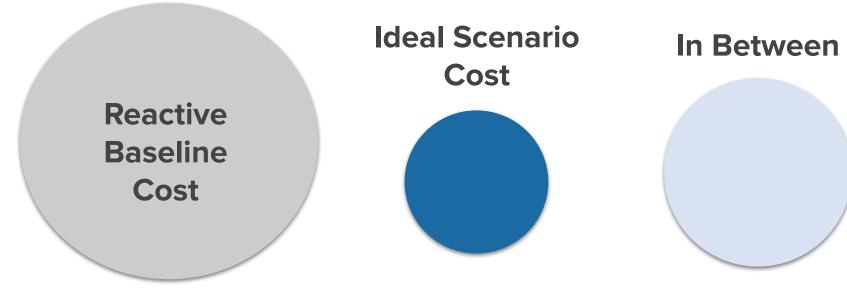
EMBER STRATEGIES

Decarb "Regulatory Framework" in Proposed San Francisco Climate Action Plan

- **100% Renewable Electricity:** San Francisco <u>requires commercial buildings to</u> <u>subscribe to a GHG-free electricity provider.</u>
- Require a Plan: Instead of energy audits, require each building to <u>develop a plan for</u> <u>decarbonization by 2035</u>
- **2035 Deadline**: ... existing large commercial buildings should be required to achieve zero emissions by 2035.
- **Public Tracking:** Use existing required annual benchmarking to track progress, celebrate leaders, and focus attention on laggards

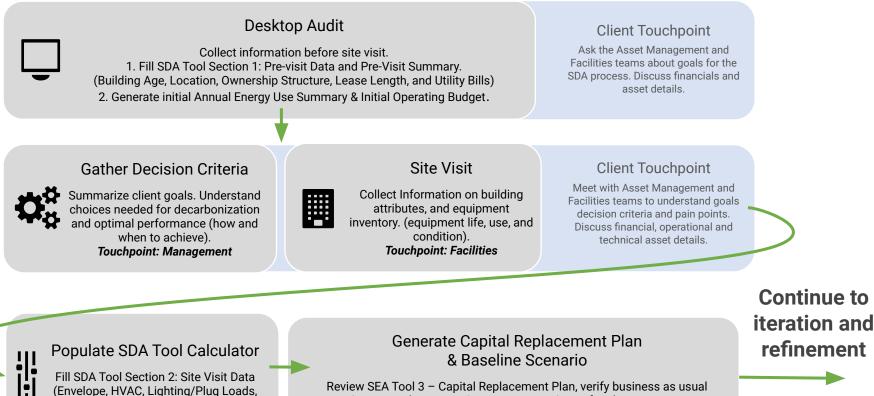
What's wrong with energy audits? Nothing, but we need the right tool for this job.

Distinction	ASHRAE Standard 211; Level 2 Audit	Strategic Decarbonization Assessment
Question answered:	How can this building perform better, today ?	How should we re-engineer this building to perform in the future ?
Financial significance	Small: "\$1s /sf . Find the most savings possible within the payback period.	Big: "\$10s /sf. Find the most cost effective path to decarbonization
Primary audience	Facilities/Ops, Engineering	Asset Management
Time horizon	Short; payback constrained	Long ; full capital cycle, 10+ yrs
Downside avoided	Wasted utility spend	Stranded asset, degraded value/NOI, increased CapEx/TCO


Strategic Decarbonization Assessment Disclaimers:

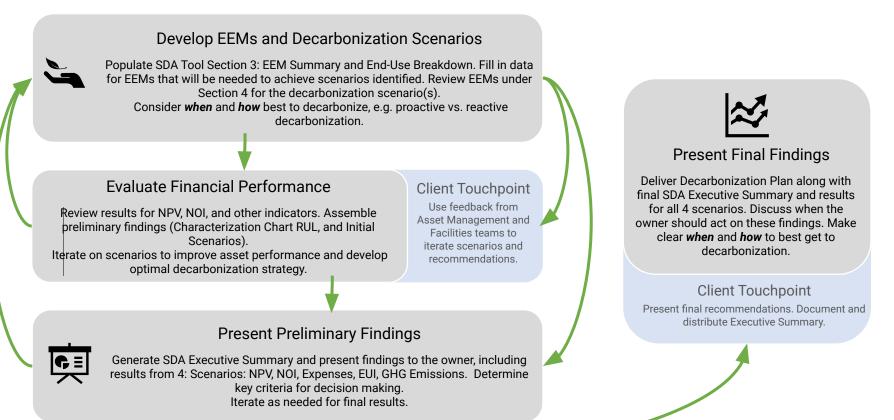
It's just a spreadsheet.

Uncertainty and complexity still exist.


SDA creates decision scenarios, uses standard financial analysis

Tweaks but no re-engineering. Replace like-for-like at end-of-life. Small efficiency improvements. Max cost to avoid stranding. Full cost of re-engineering hits in advance of regulatory requirements. Lowest marginal cost. Re-engineering, not replacements. Opportunistic, taking advantage of vacancies and other triggers. Maximize NOI while minimizing TCO. Strategically improve and reconfigure systems.

Rational and realistic proactive/reactive mix, designed for a specific owner based on real constraints.


SDA Process (Detailed Version): Data Collection and Engineering

and Equipment Inventory)

Review SEA Tool 3 – Capital Replacement Plan, verify business as usua equipment replacement. Generate comparison of replacement cost to equipment RUL. Auto-generate baseline scenario under Section 4.

SDA Process Cont. (Detailed Version): Iteration and Refinement

NYSERDA distinctions (beyond geographic)

The San Francisco SDA process adapts the energy audit process to support capital planning.

A decarb focused capital planning exercise can be more streamlined, aligning the engineering plan to fit the overall plan from the outset, including market positioning and leasing considerations.

Simplifications are sought.

Costs estimates: "Probable cost" + budget to study

					Range of racy		
AACE Class	ANSI Classification		Project Definition	Low Expected Actual Cost	High Expected Actual Cost	Other Terms	
Class 5	Order-of-	Strategic Planning; Concept Screening	0% to 2%	-50% to - 20%	+30% to +100%	ROM; Ballpark; Blue Sky; Ratio	
Class 4	Magnitude	Feasibility Study	1% to 15%	-30% to - 15%	+20% to +50%	Feasibility; Top-down; Screening; Pre-design	
Class 3	Budgetary	Budgeting	10% to 40%	-20% to - 10%	+10% to +30%	Budget; Basic Engineering Phase; Semi- detailed	
Class 2	Definition	Bidding; Project Controls; Change Management	30% to 75%	-15% to - 5%	+5% to +20%	Engineering; Bid; Detailed Control; Forced Detail	
Class 1	Definitive	Bidding; Project Controls; Change Management	65% to 100%	-10% to - 3%	+3% to +15%	Bottoms Up; Full Detail; Firm Price	

Source: ProcessEngineer.com

Sample SDA Inputs and Output Graphs

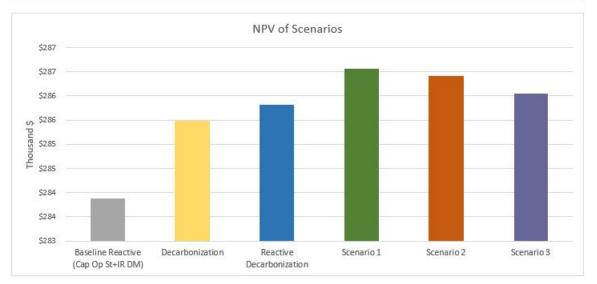
SDA Inputs and Assumptions Summary

Anticipated Holding Period	Medium
Office Classification (AA/A, B, C) - If Applicable	AA/A
Assessed value from tax records	\$160,000,000
Ownership type	Institutional
Management Type	3rd Party
Annual Rent	\$34,000,000
Net Lettable Area, or Rentable SF	\$340,000
Annual Maintenance Costs	\$1,505,000
Annual Utility Costs	\$1,355,000
Other Annual Income	\$0
Holding Period (Years)	20 years

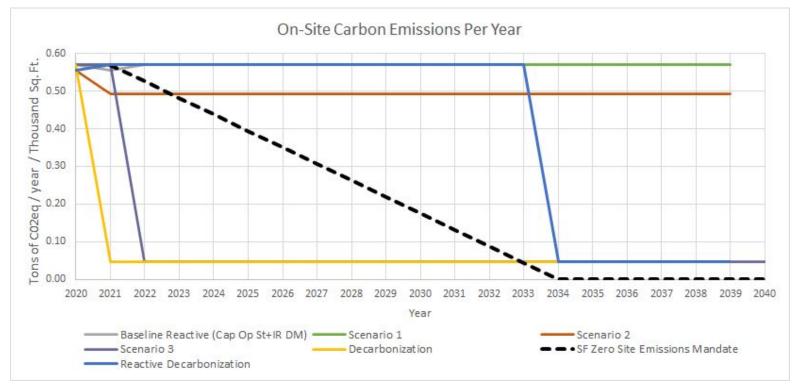
Capitalization threshold	\$25,000
Cost Escalation Rate	3.5%
Management Fee	5.0%
Discount Rate	5.0%
Rentable to Gross SF	85.0%
Avg SF/office tenant	11390 SF/pp
Avg sf per office worker	360 SF/pp
Avg SF per maint worker	125000 SF/pp
Annual Vacancy rate	5.5%
Avg annual rent per SF	\$100 \$/SF
Cleaning	\$3.638 \$/SF
Repair / Maintenance	\$3.763 \$/SF
Utility	\$3.388 \$/SF
Security	\$1.425 \$/SF
Administrative	\$1.813 \$/SF
Fixed	\$8.725 \$/SF
Parking	\$0.725 \$/SF

Building Initial Energy and Carbon Characteristics					
Annual Electricity Consumption	4,225,000	kWh/year			
Annual Natural Gas Consumption	37,000	therms/year			
Total Annual Energy Consumption	18,115,700	kBtu/year			
On-Site Generation	34120	kBtu/year			
Total Annual Emisisons	1210470	kg CO2 equivalent			
Building EUI	47.8	kBtu/SF-year			
Electric Building EUI	37.9	kBtu/SF-year			
Gas Building EUI	9.7	kBtu/SF-year			
Site EUI	47.7	kBtu/SF-year			
Energy Cost Index ECI	\$2.398	\$/SF-year			

Highlights must be updated for New York.

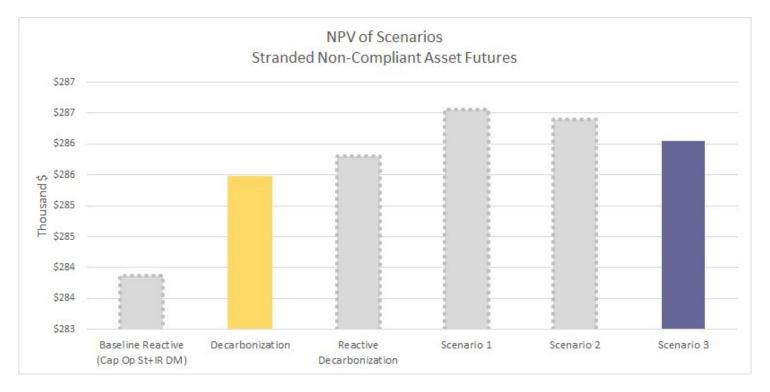

Build	ing Energy Assumptions and Inputs		
	Electricity Escalation Rate	2.0%	
	Natural Gas Escalation Rate	2.0%	
	Other Fuel Escalation Rate	2.0%	
	Electricity Emissions Factor	0.24 kg CO2/kWh	
	Natural Gas Emissions Factor	5.31 kg CO2/therm	
	Other Fuel Emissions Factor	0.00 kg CO2/kBtu	
	Use of Site Carbon Fee? (Y/N)	No	
	Site Carbon Fee	\$10.0 \$/ton CO2eq	
	Carbon Fee Escalation Rate	2.0%	

Highlights	require EBC
participan	ts' insight.

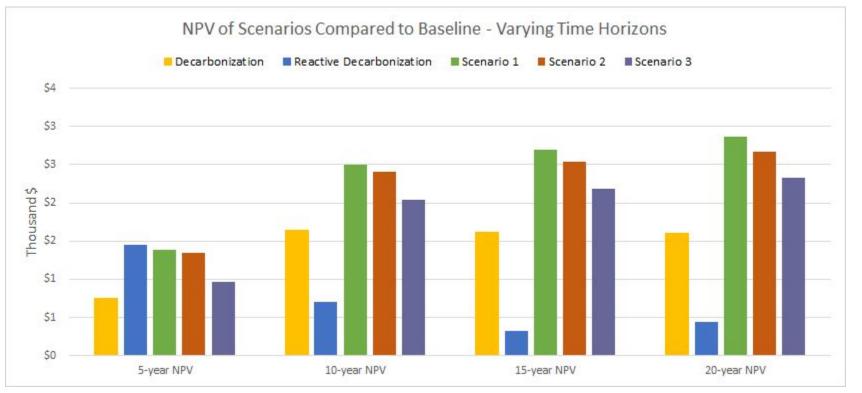

Farget Assumptions and Criteria	
Target Site EUI Mandate	48.0 kBtu/SF-year
Target EUI Annual "Ratchet"	1.0% %
Target Site Carbon Intensity	3.20 Tons CO2eq/yr-1000SF
Target Carbon Intensity Annual "Ratchet"	0.5% %
Year Target Mandates Begin	2021

SDA Basic Scenario Visualization

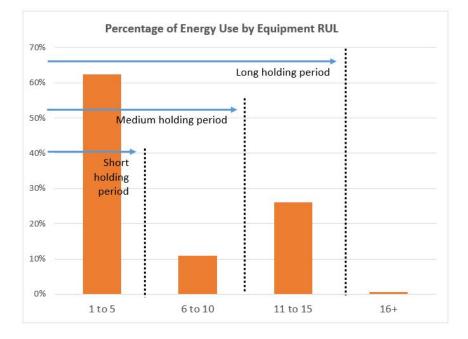
Scenario	Annual Savings \$	Total Cost \$	CapEx \$	OpEx \$	NPV \$ x1000	Progress to ZNC %	Year Asset Stranded, Non-Compliant
Decarbonization	\$103,450	\$904,500	\$856,000	\$48,500	\$285	21%	2033
Reactive Decarbonization	\$103,450	\$103,450	\$103,450	\$103,450	\$286	21%	2022
Scenario 1	\$52,000	\$222,000	\$202,000	\$20,000	\$287	6%	2022
Scenario 2	\$38,500	\$279,000	\$225,000	\$54,000	\$286	3%	2023
Scenario 3	\$41,750	\$662,500	\$658,000	\$4,500	\$286	15%	2033

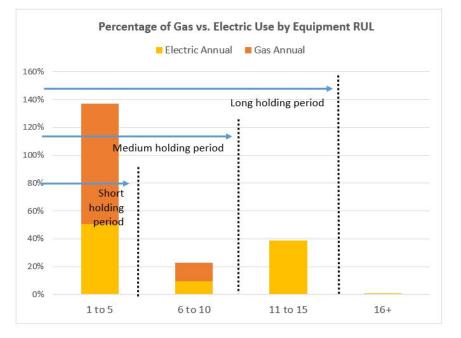


SDA Scenarios Carbon Trajectories


EMBER STRATEGIES

SDA Application of Carbon Regulations to Scenarios




EMBER STRATEGIES

SDA's Multiple Time Horizon NPVs

SDA Equipment Age and Fuel Sources

EMBER STRATEGIES

LBURT@EMBERSTRATEGIES.COM

